Assessing and Mitigating Impacts of Anthropogenic Sound on Marine Mammals

Presentation to the Monterey Bay National Marine Sanctuary Sanctuary Advisory Council
25 April 2014

Karin A. Forney
Southwest Fisheries Science Center, NMFS, NOAA
110 Shaffer Rd, Santa Cruz CA 95060
Karin.Forney@noaa.gov
Talk Overview

- Background and defining the issue
- Local case study: Planned (ultimately cancelled) 2012 Diablo Canyon Seismic Survey
 - Assessment, monitoring, and mitigation of impacts to marine mammals
- Give perspective on:
 - Data gaps and important unanswered questions
 - Challenges
 - Designing effective strategies
- Discussion / questions?
Background
Effects of sound on marine mammals

- Marine mammals rely on sound to sense their environment, forage, communicate

- Anthropogenic sound can adversely affect marine mammals in multiple ways:
 - Behavioral disruption
 - Hearing loss
 - Adverse impacts on prey species
 - Stress, injury, death

- Some species known to be more sensitive than others:
 - Beaked whales (navy sonar / seismic surveys)
 - Harbor porpoise (pile driving operations)
 - Melon-headed whales (mass strandings associated with sonar activities)
Common mitigation strategies

Planning:
- Adjust seasonal timing to reduce overlap (migratory species)
- Avoid breeding/feeding periods
- Keep duration of activities as short as possible
- Minimize exposure of most sensitive species

Operational:
- Ramp up sound gradually to allow animal to move away before sound is loud enough to cause injury
- Monitor for marine mammals in real-time (ship/air/acoustic)
- Suspend activities if animals are detected nearby (until animals leave area)

Operational Paradigm: Allowing animals to move away from sound source will reduce risk of injury
Failure of Paradigm: For some populations, this paradigm is inadequate, and may indeed cause harm.

Key considerations:
- Are there small populations?
- Do they have suitable habitat outside of impact zone?
- What are risk factors they will be exposed to?
 - Reduced foraging success
 - Bycatch in fisheries
 - Increased stress
 - Mass stranding
 - Inter-specific aggression
 - Increased predation
- Potential population-level consequences, yet we have little or no data to estimate effects.

Cotter et al. (2011)
Defining the Issue

What sounds?
- Sonar
- Seismic surveys
- Renewable energy facilities (e.g. pile-driving)
- Vessel traffic, other...

What species?
- Some more sensitive to sound than others
- What other factors are important (e.g. small local populations)?
- What do we know (or not) about impacts? (individual, cumulative, 'Soundscape' concepts)
- How can we address key information needs?
Diablo Canyon Seismic Surveys (Fall 2012)

- PG&E proposed 3-D high energy seismic surveys to assess risks associated with offshore fault zones.
- SWFSC became involved during summer 2012 to ensure adequate monitoring for species protected by the MMPA and ESA.
- Limited time to develop and implement plan

Monitoring Program Overview
- Our concerns
- Key components
- Lessons learned
Our Primary Concerns

1. Large Whales

- Foraging habitat for several ESA-listed species
 - Humpback whales
 - Fin whales
 - Blue whales

- Gray whale
 - Migrate through area beginning in December
Our Primary Concerns

2. Harbor Porpoise
- The "Morro Bay Stock" of ~2000 porpoises
- Sensitive to anthropogenic disturbance (e.g. sound, vessels)
- Displacement into secondary habitat for days to weeks
- Adverse impacts on foraging abilities and thus health and survival?
Our Primary Concerns

2. Harbor Porpoise

- The "Morro Bay Stock" of ~2000 porpoises
- Sensitive to anthropogenic disturbance (e.g. sound, vessels)
- Displacement into secondary habitat for days to weeks
- Adverse impacts on foraging abilities and thus health and survival?
Diablo Canyon Seismic Survey
Monitoring Program Overview

- **Objective:** to assess potential impacts of seismic surveys

- **Methods:**
 - 3 Phases: pre-, during, and post-seismic survey data collection
 - 3 Components
 1. Aerial surveys
 2. Passive acoustics
 3. Active beach surveillance and stranding response

Photo: Solvin Zankl
1. Aerial Surveys

Objectives:
- Detect north/south or inshore/offshore displacement of harbor porpoises
- Assess distribution and abundance of ESA-listed whales and other marine mammals

Pre-survey conditions:
- Provides baseline for comparison to ‘during’ and ‘post’ seismic survey.
1. Aerial Surveys

Objectives:
- Detect *north/south* or *inshore/offshore* displacement of harbor porpoises
- Assess distribution and abundance of ESA-listed whales and other marine mammals

Pre-survey conditions:
- Provides baseline for comparison to ‘during’ and ‘post’ seismic survey.
2. Passive acoustics

- Objectives: To assess harbor porpoise distribution and movements, and to document ambient noise
- Deploy porpoise click detectors (CPODs) to monitor north/south occurrence patterns
- Some CPODs deployed with ambient sound recorders (DSG model)
2. Passive acoustics - CPOD data summaries

- 5 moorings deployed
 Oct/Nov - Dec/Feb
- Highly variable porpoise detections
- Some dolphins detected
- Analysis after retrieval (not real-time)

Goal: Identify displacement from seismic survey area to areas north or south, if it occurs?
3. Active Beach Surveillance and Stranding Response

Objectives:

- Detect and efficiently respond to live and dead stranded marine mammals and sea turtles
 - Walk index beaches
 - Fly the study area
- Determine cause of death:
 - Rule out disease
 - Expand knowledge about the impacts of sound
Diablo Canyon Seismic Survey Monitoring Program Conclusions

- The completed pre-seismic survey monitoring indicates the plan was feasible (but... we got lucky with the weather)

- Was it effective? Unclear...
 - Short time window of base-line surveys (weeks)
 - Since seismic survey cancelled, did not learn whether the level of monitoring would have been adequate to detect impacts
 - Monitoring was focused on detecting displacement or strandings of individuals. What about other (more subtle) effects?

- Effective programs require advanced planning & coordination (years, not weeks)
Perspectives on Designing Effective Monitoring Programs

- Data gaps and unanswered questions
 - Species (and population) responses to sound differ
 - Effective mitigation requires some knowledge of these population-level responses
 - Thresholds for ‘effects of concern’ (e.g. how much displacement is a problem? For how long?)

- Challenges
 - Anthropogenic sound is increasing in the marine environment (globally)
 - Limited understanding of how sound affects individuals, populations, and ecosystem health
 - Small, localized populations present a particular challenge
How do we design effective monitoring/assessment programs?

- Coordinated early planning
- Identify key habitats, species, times of concern
- Evaluate any existing baseline data (e.g. stranding rates, animal distribution and movements, etc)
- Design appropriate monitoring program (e.g. using aerial surveys, passive acoustics, tagging studies, etc)
- Multi-year baseline studies with pre-, during, and post-impact components are essential
Conclusions

- Great need to understand impacts of anthropogenic sound on marine mammals (and other marine species).
 - Southern California Behavioral Response Study
 - Multi-year studies of porpoises in the North Sea

- Given that many human activities generate sound...
 - Conduct well-designed, advanced studies to understand potential responses to sound stimuli
 - Design real-time monitoring to detect potential effects quickly, and guide immediate mitigation actions.
 - Coordinate with other users of marine environment, e.g. to reduce risk of bycatch in adjacent areas

- New NOAA initiatives that recognize these needs (e.g. Ocean Noise Strategy); working towards understanding and managing impacts more effectively.
Acknowledgments

Susan J. Chivers, Lisa T. Ballance
Southwest Fisheries Science Center

Sarah M. Wilkin, Southwest Region

Teri K. Rowles, NOAA Office of Protected Resources

Brandon Southall, SEA Inc.

Thank you!
Questions? Comments?

Some sounds may be stranger than others....