The ecology of organisms on the “lost reefs” of the Monterey Bay National Marine Sanctuary

Lauren Parker1,2, James Lindholm1, Scott Hamilton2, Andrew DeVogelaere3
1 – Institute for Applied Marine Ecology at California State University, Monterey Bay, 2 – Moss Landing Marine Laboratories, 3 – Monterey Bay National Marine Sanctuary

Introduction

• Marine protected areas (MPAs) are used to conserve, manage, and protect ecologically and economically important marine resources1.
• The design, implementation, and management of MPAs depends on reliable species/habitat associations and their use in estimating species composition2.
• The majority of subtidal sampling to characterize marine resources in the MBNMS (Figure 1) is conducted using SCUBA in waters shallower than 20 meters and a variety of image-based platforms in waters deeper than 40 meters.
• While effective, these sampling techniques have left an area between 20 and 40 meters depth, termed the “lost reefs,” unexplored.

Goals

The goals of this project are to:
1. Assess abundance, density, and species composition along 30 meter transects at sites in Carmel Bay, California.
2. Determine accurate size estimates and precise geo-referencing of individual organisms along each transect.
3. Create habitat suitability models for economically important species in the MBNMS.
4. Provide data and analyses for use in updating the Sanctuary’s Site Characterization, Condition Report, and Sanctuary Management Plan.

Methods

• Primary diving operations will be shore-based (with periodic boat divers) and will be conducted within no-decompression limits.
• Diver-held stereo video cameras will be coupled with traditional underwater visual census techniques to sample fishes and selected invertebrates.
• All stereo-video footage will be analyzed using Eventmeasure (Figure 3) digital imagery processing software and cross-referenced using visual census surveys along the same transect.
• Fish species will be identified in Eventmeasure and this data will be used to define depth zones and movement patterns for economically important fished species.
• Size data collected from Eventmeasure will be converted to biomass using commonly accepted length-weight ratios that are specific to each species of fish3.
• High resolution topographic maps will be used in conjunction with survey data to produce habitat suitability models which can then be extrapolated to similar habitats up and down the coast.

Hypotheses

H1: “Lost reef” depth zone will act as a transition zone between shallow water and deep water species.

Hypothesis 1: Surveys will reveal that the depth zone between 20 and 40 meters acts as a transition zone occupied by both shallow water and deep water rockfish.

Rockfish occupy virtually every depth zone in temperate reefs, however different species tend to be found in different depth zones. This study will aid in the definition of rockfish depth distributions and help to define the connection between shallow water and deep water species assemblages.

References


Significance

This project will:
1. Address the paucity of data in the records of marine resources of the MBNMS and contribute to the Sanctuary’s Site Characterization, Condition Report, and New Sanctuary Management Plan.
2. Monitor species interactions between shallow water and deep water community assemblages in an area that acts as a transition zone.
3. Provide researchers and managers with quantifiable data that can be used to assess the value and management of the MBNMS.
4. Create habitat suitability models that can be used across various spatial scales to identify species composition and abundance, particularly in areas outside of the depth constraints of traditional survey methods.

Acknowledgements

Contact: laparker@csumb.edu
Institute for Applied Marine Ecology California State University, Monterey Bay