Comparing chemical signatures in the otoliths of juvenile rockfish (*Sebastes jordani* and *Sebastes entomelas*) to water chemistry along central California: What can they tell us?

Lindsay E. Starrett\(^1\), Brian K. Wells\(^2\), Mark H. Carr\(^1\), Churchill B. Grimes\(^2\)

\(^1\)100 Shaffer rd, University of California, Long Marine Lab, Santa Cruz
\(^2\)110 Shaffer rd, NOAA National Marine Fisheries Service, Fisheries Ecology Division, Santa Cruz, CA

Introduction

Marine communities are strongly influenced by the delivery of pelagic juveniles that recruit into local populations. Interannual variation in the delivery of young can drive both year-class strength and population structure of many marine species.\(^6\) An ecologically and economically important genus that resides within the Monterey Bay National Marine Sanctuary (MBNMS) is that of *Sebastes*, the rockfish. Surveys conducted by the National Marine Fisheries Service (NMFS), Santa Cruz have been monitoring the abundance and distribution of pelagic juvenile rockfish within MBNMS for 25 years. Over time, abundance of juveniles has been shown to be highly variable, with the years of lowest abundance coinciding with years of low upwelling intensity (El Niño). Understanding how oceanographic conditions, such as upwelling, influence variability of juvenile abundance is fundamental to our knowledge of marine populations, ecosystems and the fisheries they support. To address this issue we will use otolith-microchemistry techniques.

Otoliths are bony structures in fish that have been shown to record water chemistry. Our initial focus will be on barium, an element that depletes rapidly in surface waters and will be a clear indicator of upwelling. Upon completion, this will be one of the first studies to use comparative water and otolith chemistries for an open coastal marine system to directly relate environmental history to growth and condition of pelagic juveniles.

Methods

Sample Collection

- Both seawater and juvenile rockfish samples were collected during the NMFS annual pelagic juvenile rockfish survey (May - June, 2007 & 2008) aboard the NOAA R/V Monterey Bay.
- Three passes were made through the central California region that includes 82 stations. Midwater hauls (35m) were conducted at night for a duration of 15 minutes. Rockfish were sorted, identified, measured to standard lengths, and frozen.
- Seawater samples are collected at each station using a GO FLO water sampler at 25m. Samples were filtered, preserved with a spike of HCl and frozen.
- Oceanographic data (temperature, salinity, chlorophyll, and ocean depth) were acquired by a CTD and on board fluorometer.

Lab Analysis:

- Otoliths from each fish were removed. One was prepared for elemental analysis and the other was set aside for aging. Elemental otoliths were maintained in a laminar flow clean-bench to prevent contamination by particulates. Each otolith was mounted in a glass bond medium sealed upstage and polished until the edges were free of crystal bond (Fig. 2). Each sample was sonicated in Milli-Q water for 10 minutes, rinsed and dried in the cleanbench.
- Inductively coupled plasma mass spectrometry (ICPMS) was used to quantify the trace element concentrations in both the seawater and the otoliths. The element to calculate ratios for Ba, Mg, and Sr were quantified. Otoliths are analyzed in conjunction with a laser that allows for targeted ablation around the outer edge of each sample: last five days of growth (Fig. 2).
- We verified areas of upwelling using sea surface temperature maps acquired by satellite. We also analyzed the seawater Ba/Ca ratios and SST for seawater data plotted over the average Ba/Ca (umol/mol) ratios found in the 2007 seawater.

Results

Objective 1: Identify Key Water Masses along Central California

- We evaluated areas of upwelling using sea surface temperature maps acquired by satellite.
- We verified the seawater signature in the otolith.
- We are seeing a match-up between otoliths and seawater of high barium concentration (Fig 3).

Ongoing Work

- Comparing seawater and otolith chemistry using multivariate and geostatistical methods.
- Exploiting multi-elemental signatures (Ba, Mg, and Sr in addition to Ba).
- Analyze 2008 otoliths.
- Objective 3: Assess effects on growth rate
- Assess if there is a difference in growth rate of shortbelly rockfish from upwelled vs. non-upwelled water.

Discussion

These preliminary results indicate predictability of upwelling locations and their chemical composition. For at least barium, concentrations in the seawater are reflected in the otoliths. We hope to expand this to multi-elemental signatures in the near future. Upon completion, this project will evaluate the effects of different water masses on growth, which underpins survival and recruitment success, for two species of rockfish. This has wide applicability of interest to fisheries and the design (i.e. location and spacing) of marine protected areas. In general, this work will aid in our understanding of environmental effects on larval dispersal and replenishment variability, a crucial gap in our understanding of marine ecosystem dynamics.

Acknowledgments

Bob Franka - UCSC Marine Analytical Lab
Jeremy Hourigan - Assistant Professor, Earth Sciences, UCSC
Bruce McFarlane - NOAA NMFS SWFSC Fisheries Ecology Division
Pete Bainbridge - Department Chair, Ecology and Evolutionary Biology, UCSC
Keith Sakuma - NOAA NMFS SWFSC Fisheries Ecology Division
C. Brock Woodson - Postdoctoral Fellow, Environmental Fluid Mechanics Laboratory, Stanford University
Project Volunteers - Megan Galvano, Gabriel Singer, Kevin Sheehoff
Funding support provided by NOAA Fisheries Ecology Division

Literature Cited